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Treatment Options: Nitrate Removal
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Ion Exchange Options

• Resin Types
– Strong-base anion exchange (SBA, pH 6-9.5)
– Weak-base anion exchange (WBA, pH 3-5)

• Equipment Configurations
– Fixed bed columns

• Downflow exhaustion-regeneration (“conventional”)
• Counterflow exhaustion-regeneration (more efficient)

– Multiple fixed-bed columns in parallel
– Continuously mixed flow reactor

• Brine Management
– Lower NaCl concentration, partial

regeneration, brine reuse, brine denitrification
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Strong-Base Ion Exchange

• Ion exchange with Cl-form SB anion resin
• A “water softener for anions”

• Exhaustion: NO3
- + RCl = RNO3 + Cl-

• Regen: RNO3 + 4NaCl = RCl + 3NaCl + NaNO3

• Advantages: Simplicity, on-demand
operation, relatively low cost

• Disadvantages: Nitrate peaking (dumping) may
occur; regeneration is inefficient, high NaCl
consumption, produces large volume of nitrate-
contaminated salt brine for disposal
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Polystyrene-DVB polymers, quaternary amine groups.
Typical particle size range 0.3-1.2 mm (16x50mesh)

Strong-Base Ion Exchange
Resin

Macroporous
(Opaque)

Microporous or Gel
(Translucent)

0.5 mm0.5 mm
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Simplified Process Flow
Diagram
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Typical Nitrate-Contaminated
Water Example
Glendale, Arizona

Species mg/L meq/L

NO3-N 21 1.5NO3-N 21 1.5
SO4

2- 48 1.0
Cl- 106 3.0
HCO3

- 122 2.0
TDS 530 7.5

All background ions, especially sulfate, compete with nitrate for sites
on the anion-exchange resin; higher TDS and SO4 = fewer bed
volumes (BV) (shorter run length).



Effect of Sulfate on
Ion Exchange Run Length
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Anion Selectivity Sequence for
Typical Strong-Base Anion Resins

SO4
2- >NO3

- > Cl- > HCO3
-

• Problem: Less preferred ions will “peak”. Nitrate is
less preferred than sulfate and therefore effluent
nitrate concentration will be higher than influent
nitrate concentration if the column is run beyond
nitrate breakthrough.
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Nitrate Peaking with Typical
(Type 1 or Type 2) Sulfate-Selective

SBA Resin
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Three Ways to
Eliminate Nitrate Peaking

• Use a nitrate-selective (NS) resin
• Operate multiple columns in parallel at

different stages of exhaustion
• Use a completely mixed flow reactor
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Nitrate Selective (NS) Resins

• In NS resins, sulfate affinity is
decreased by increasing the charge-
separation distance between
exchange sites

• Nitrate affinity is increased by making
the resins more hydrophobic in
nature
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Nitrate Peaking Eliminated with
Nitrate-Selective Resin
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Multiple Parallel Columns
Eliminate Peaking

• Operation of several (2-20) columns in
parallel at different stages of exhaustion
– A carousel or multiple stationary columns

may be employed for multiple parallel
columns

– “Smoothes out” the effluent history
– Minimizes or eliminates peaking
– Upflow regeneration and partial brine/rinse

reuse can conserve salt and reduce brine
disposal volume
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Operate Columns (2-20) in Parallel
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Completely Mixed IX Flow
Reactor

Treated Water

Raw Water

Make-up Resin

Resin-Water
Contact Reactor

Resin-Water
Separator

Brine Tank

Resin
Regeneration

Tank

Make-up Resin

NaCl

Waste Brine

Regenerated Resin

Spent Resin
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Regeneration of Spent Resin

• Divalent SO4
2- is easy to regenerate

because of  the “selectivity reversal” for
SO4

2-/Cl- exchange.
• Monovalent nitrate ion does not

undergo selectivity reversal during
(NO3

-/Cl) exchange;
therefore, regeneration is more difficult

• The higher the NO3
-/Cl selectivity, the

harder the resin is to regenerate
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Because of selectivity reversal, sulfate
is easy to elute from the resin.

Because selectivity does not reverse,
nitrate is difficult  to elute from the resin.

Typical sulfate and nitrate elution curves during regeneration of a standard
SBA resin with 6% NaCl.

Because selectivity does not reverse,
nitrate is difficult  to elute from the resin.
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Higher
Conc.
NaCl
Wastes
Salt

“Complete
regeneration”:
> 95% removal of
nitrate.

Higher
Conc.
NaCl
Wastes
Salt

6%
NaCl

12%
NaCl
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Possible Solutions to the
Regeneration Problem

• Partial regeneration: 50-60% NO3
- removal

– Saves salt and reduces waste brine volume
– High nitrate leakage on next run, may preclude

blending
• Upflow regeneration, multiple parallel

columns, mixed countercurrent ion exchange
• Denitrification (biological or chemical) and reuse

– Brine reused more than thirty times
– >90% reduction in brine waste
– ~50% savings in NaCl consumption
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Complete vs Partial Regeneration
Glendale, AZ Well Water

Description Complete Partial

NaCl Concentration, N (%) 0.25
(1.5%)

1.0
(6.0%)

0.25
(1.5%)

1.0
(6.0%)

eq Cl/eq resin,
(lbs NaCl/ft3 resin)

3.0
(15.3)

1.2
(6.1)

Wastewater volume as % of
blended product water

3.0 1.1

NaCl consumed for 1 Mgd
blended product water, lb/day

3250 2360



Ion Exchange Summary
• SBA with Cl-form IX resin is effective for NO3

(and U, As, Cr, TOC, ClO4) removal
• Nitrate-selective resins, parallel columns, and

continuous flow mixed reactor ion exchange
smooth out peaks, improve run length, and
conserve salt

• Brine disposal is primary challenge
• Partial regeneration (e.g. <6% NaCl) and

denitrification and reuse can minimize brine
disposal and salt consumption
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